

US009181338B2

(12) United States Patent

Simard

IL-1ALPHA

(54) HUMAN ANTIBODY SPECIFIC FOR

(71) Applicant: **XBiotech, Inc.**, Vancouver (CA)

(72) Inventor: John Simard, Austin, TX (US)

(73) Assignee: **XBiotech, Inc.**, Vancouver (CA)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 14/567,072

(22) Filed: **Dec. 11, 2014**

(65) **Prior Publication Data**

US 2015/0094455 A1 Apr. 2, 2015

Related U.S. Application Data

- (60) Continuation of application No. 14/177,892, filed on Feb. 11, 2014, now Pat. No. 8,956,831, which is a continuation of application No. 13/762,453, filed on Feb. 8, 2013, now Pat. No. 8,679,489, which is a continuation of application No. 13/224,943, filed on Sep. 2, 2011, now Pat. No. 8,388,956, which is a division of application No. 12/455,458, filed on Jun. 1, 2009, now Pat. No. 8,034,337.
- (60) Provisional application No. 61/178,350, filed on May 14, 2009, provisional application No. 61/121,391, filed on Dec. 10, 2008, provisional application No. 61/057,586, filed on May 30, 2008.

(2006.01)
(2006.01)
(2010.01)
(2010.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(10) Patent No.: US 9,181,338 B2

(45) **Date of Patent:** *Nov. 10, 2015

(52) U.S. Cl.

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

FOREIGN PATENT DOCUMENTS

CA	2426384	4/2003
JP	2004285057	4/2004
WO	0233094	4/2002
WO	2006001967	1/2006

OTHER PUBLICATIONS

Fujii, Masakazu et al.: "A case of advanced gastric cancer with carcinomatous ascites successfully treated with intraperitoneal administration of CDDP and TS-1," Japanese Journal of Gastoenterological Surgery, 2006, vol. 39:189-195;.

U.S. National Institutes of Health: "Safety and Preliminary Efficacy Study of an Anti-inflammatory Therapeutic Antibody in Reducing Restenosis," NCT01270945, ClinicalTrials.gov, Jan. 4, 2011. XBiotech, Inc. Pressrelease: "XBiotech Files Investigational New

Drug (IND) Application with the FDA for the treatment of Chronic Myelogenous Leukemia," Evaluate, Nov. 22, 2010.

Primary Examiner — Bridget E Bunner Assistant Examiner — Fozia Hamud (74) Attorney, Agent, or Firm — Stanley A. Kim

(57) ABSTRACT

Fully human monoclonal Abs includes (i) an antigen-binding variable region that exhibits very high binding affinity for IL-1 α and (ii) a constant region that is effective at both activating the complement system though C1q binding and binding to several different Fc receptors.

2 Claims, No Drawings

HUMAN ANTIBODY SPECIFIC FOR IL-1ALPHA

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. nonprovisional patent application Ser. No. 14/177,892 filed on Feb. 11, 2014, now U.S. Pat. No. 8,956,831, which is a continuation application of U.S. nonprovisional patent application Ser. No. 13/762,453 filed on Feb. 8, 2013 (now U.S. Pat. No. 8,679,489), which is a continuation application of U.S. nonprovisional patent application Ser. No. 13/224,943 filed on Sep. 2, 2011 (now U.S. Pat. 8,388,956), which is a divisional application of U.S. nonprovisional patent application Ser. No. 12/455,458, filed on Jun. 1, 2009 (now U.S. Pat. No. 8,034, 337), which claims the priority of U.S. provisional patent applications Ser. Nos. 61/057,586, 61/121,391, and 61/178, 350 filed on May 30, 2008, Dec. 10, 2008, and May 14, 2009, respectively; all of which are incorporated herein by reference.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

Not applicable.

FIELD OF THE INVENTION

The invention relates generally to the fields of immunology, inflammation, cancer, vascular disorders, and medicine. More particularly, the invention relates to antibodies (Abs) which specifically bind interleukin- 1α (IL- 1α) and methods of using such Abs to treat, prevent, or detect a pathology associated with aberrant IL- 1α expression.

BACKGROUND

IL-1 α is pro-inflammatory cytokine that plays a role in a number of different activities including inflammation, ⁴⁰ immune responses, tumor metastasis, and hematopoiesis. IgG autoantibodies against IL-1 α occur naturally in the general human population and are thought to be beneficial in diseases such as atherosclerosis.

SUMMARY

The invention is based on the development of fully human monoclonal Abs (mAbs) that include (i) an antigen-binding variable region that exhibits very high binding affinity for 50 human IL-1 α and (ii) a constant region that is effective at both activating the complement system though C1q binding and binding to several different Fc receptors. The IL-1 α specific mAbs described herein was made by replacing the constant region of a human IgG4 mAb having a variable region specific for human IL-1 α with the constant region of a human IgG1 mAb

Accordingly, the invention features a purified human IgG1 mAb that specifically binds to human IL-1 α , the mAb including a heavy chain covalently joined to a light chain. The heavy chain can include the amino acid sequence of SEQ ID NO: 9 and the light chain can include the amino acid sequence of SEO ID NO:11.

Also within the invention is a set of isolated nucleic acids including a first nucleic acid encoding the heavy chain of a 65 human IgG1 mAb that specifically binds to IL-1 α , and a second nucleic acid encoding the light chain of the human

2

IgG1 mAb that specifically binds to human IL-1 α . The first nucleic acid can encode the amino acid sequence of SEQ ID NO: 9 and the second nucleic acid can encode the amino acid sequence of SEQ ID NO:11. The first nucleic acid can include the nucleotide sequence of SEQ ID NO: 10 and the second nucleic acid can include the nucleotide sequence of SEQ ID NO:12.

In another aspect, the invention features an expression vector including a nucleic acid encoding the amino acid sequence of SEQ ID NO: 9 or SEQ ID NO: 11.

Another feature of the invention is an isolated host cell (e.g. a mammalian cell such as a CHO cell) including set of isolated nucleic acids including a first nucleic acid encoding the heavy chain of a human IgG1 mAb that specifically binds to IL-1 α , and a second nucleic acid encoding the light chain of the human IgG1 mAb that specifically binds to human IL-1 α . The heavy chain can include the amino acid sequence of SEQ ID NO: 9 and a light chain can include the amino acid sequence of SEQ ID NO:11.

The invention further features a method of killing a cell expressing human IL- 1α . This method can include the step of contacting the cell with a purified human IgG1 mAb that specifically binds to human IL- 1α .

A method of inhibiting migration of a human cell through 25 a basement membrane matrix is also within the invention. This method can include the step of adding a purified mAb that specifically binds to human IL-1α to a mixture including a basement membrane matrix and the human cell.

Further within the invention is a method of inhibiting an IL- 1α -induced increase in ICAM-1 and/or E-selectin expression on the surface of a human endothelial cell. This method can include the step of adding a purified mAb that specifically binds to human IL- 1α to a mixture including the endothelial cell and IL- 1α .

The invention additionally includes a method of tracking inflammation in a human subject previously subjected to the steps of: obtaining from the subject a first sample of peripheral blood mononuclear cells at a first time; contacting the first sample with a purified mAb that specifically binds to human IL-1α; and determining the percent of cells in the first sample that bind the monoclonal Ab. This method can include the steps of: (a) obtaining from the subject a second sample of peripheral blood mononuclear cells at a second time; (b) contacting the second sample with the purified mAb that specifically binds to human IL-1α; (c) determining the percent of cells in the second sample that bind the monoclonal Ab; and (d) comparing the percent of cells in the first sample that bind the mAb to the percent of cells in the second sample that bind the monoclonal Ab.

In the foregoing methods, the purified mAb can be a human IgG1 mAb including a heavy chain covalently joined to a light chain, e.g., wherein the heavy chain includes the amino acid sequence of SEQ ID NO: 9 and the light chain includes the amino acid sequence of SEQ ID NO:11.

Another method within the invention features the steps of: (a) enriching a biological sample obtained from a human subject using a filter to separate molecules according to molecular weight into a first fraction including intact IgG complexed with IL- 1α and second fraction including molecules less than 100 Kda; and (b) quantifying the amount of IL- 1α in the first fraction.

Yet another method within the invention features the steps of: (a) enriching a sample of plasma obtained from a human subject using a filter that separates molecules according to molecular weight into a first fraction including intact IgG complexed with IL-1 α and second fraction including molecule less than 100 Kda; (b) adding the first fraction to a

substrate including immobilized anti-human IgG Abs under conditions that allow IgG in the first fraction to specifically bind the anti-human IgG Abs immobilized on the substrate; (c) washing the substrate to remove material in the first fraction that does not specifically bind the immobilized anti- 5 human IgG Abs; (d) contacting the substrate washed in step (c) with an Ab that specifically binds human IL-1 α under conditions that allows the Ab that specifically binds human IL-1 α to specifically bind any human IL-1 α bound to the substrate; (e) washing the substrate to remove any of the Ab that specifically binds human IL-1 α that is not bound to the substrate; and (f) quantifying the amount of Ab that specifically binds human IL-1 α remaining bound to the substrate after step (e).

Unless otherwise defined, all technical terms used herein 15 have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Commonly understood definitions of biological terms can be found in Rieger et al., Glossary of Genetics: Classical and and Lewin, Genes V, Oxford University Press: New York,

The term "specifically binds", as used herein, when referring to a polypeptide (including Abs) or receptor, refers to a binding reaction which is determinative of the presence of the 25 protein or polypeptide or receptor in a heterogeneous population of proteins and other biologics. Thus, under designated conditions (e.g. immunoassay conditions in the case of an Ab), the specified ligand or Ab binds to its particular "target" and does not bind in a significant amount to other proteins 30 present in the sample or to other proteins to which the ligand or Ab may come in contact in an organism. Generally, a first molecule that "specifically binds" a second molecule has an equilibrium affinity constant greater than about 10⁵ (e.g., 10⁶, $10^7, 10^8, 10^9, 10^{10}, 10^{11},$ and 10^{12} or more) liters/mole for that 35 second molecule.

When referring to a protein molecule such as an Ab, "purified" means separated from components that naturally accompany such molecules. Typically, an Ab or protein is purified when it is at least about 10% (e.g., 9%, 10%, 20%, 40 30% 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.9%, and 100%), by weight, free from the non-Ab proteins or other naturally-occurring organic molecules with which it is naturally associated. Purity can be measured by any appropriate method, e.g., column chromatography, polyacrylamide 45 gel electrophoresis, or HPLC analysis. A chemically-synthesized protein or other recombinant protein produced in a cell type other than the cell type in which it naturally occurs is "purified."

Although methods and materials similar or equivalent to 50 those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All applications and publications mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including defini- 55 tions will control. In addition, the particular embodiments discussed below are illustrative only and not intended to be limiting.

DETAILED DESCRIPTION

The invention encompasses compositions and methods relating to fully human mAbs that include (i) an antigenbinding variable region that exhibits very high binding affinity for IL-1α and (ii) a constant region that is effective at both 65 activating the complement system though C1q binding and binding to several different Fc receptors. The below described

preferred embodiments illustrate adaptation of these compositions and methods. Nonetheless, from the description of these embodiments, other aspects of the invention can be made and/or practiced based on the description provided below.

Methods involving conventional immunological and molecular biological techniques are described herein. Immunological methods (for example, assays for detection and localization of antigen-Ab complexes, immunoprecipitation, immunoblotting, and the like) are generally known in the art and described in methodology treatises such as Current Protocols in Immunology, Coligan et al., ed., John Wiley & Sons, New York. Techniques of molecular biology are described in detail in treatises such as Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Sambrook et al., ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001; and Current Protocols in Molecular Biology, Ausubel et al., ed., Greene Publishing and Wiley-Interscience, New York. Ab methods are described in Handbook of Therapeutic Abs, Molecular, 5th edition, Springer-Verlag: New York, 1991; 20 Dubel, S., ed., Wiley-VCH, 2007. Cell culture techniques are generally known in the art and are described in detail in methodology treatises such as Culture of Animal Cells: A Manual of Basic Technique, 4th edition, by R Ian Freshney, Wiley-Liss, Hoboken, N.J., 2000; and General Techniques of Cell Culture, by Maureen A Harrison and Ian F Rae, Cambridge University Press, Cambridge, UK, 1994. Methods of protein purification are discussed in Guide to Protein Purification: Methods in Enzymology, Vol. 182, Deutscher M P, ed., Academic Press, San Diego, Calif., 1990.

In one aspect, the invention features a fully human mAb that includes (i) an antigen-binding variable region that exhibits very high binding affinity for human IL-1 α and (ii) a constant region that is effective at both activating the complement system though C1q binding and binding to several different Fc receptors. The human Ab is preferably an IgG1. The Ka of the Ab is preferably at least $1 \times 10^9 \, M^{-1}$ or greater (e.g., greater than $9 \times 10^{10} \, M^{-1}$, $8 \times 10^{10} \, M^{-1}$, $7 \times 10^{10} \, M^{-1}$, $6 \times 10^{10} \, M^{-1}$, $5 \times 10^{10} \, M^{-1}$, $4 \times 10^{10} \, M^{-1}$, $3 \times 10^{10} \, M^{-1}$, $2 \times 10^{10} \, M^{-1}$, or $1 \times 10^{10} \,\mathrm{M}^{-1}$).

Because B lymphocytes which express Ig specific for human IL-1 α occur naturally in human beings, a presently preferred method for raising mAbs is to first isolate such a B lymphocyte from a subject and then immortalize it so that it can be continuously replicated in culture. Subjects lacking large numbers of naturally occurring B lymphocytes which express Ig specific for human IL-1 α may be immunized with one or more human IL-1 α antigens to increase the number of such B lymphocytes. Human mAbs are prepared by immortalizing a human Ab secreting cell (e.g., a human plasma cell). See, e.g., U.S. Pat. No. 4,634,664.

In an exemplary method, one or more (e.g., 5, 10, 25, 50, 100, 1000, or more) human subjects (e.g., subjects not previously administered a human IL-1α vaccine) are screened for the presence of such human IL-1 α -specific Ab in their blood. Those subjects that express the desired Ab can then be used as B lymphocyte donors. In one possible method, peripheral blood is obtained from a human donor that possesses B lymphocytes that express human IL-1α-specific Ab. Such B lymphocytes are then isolated from the blood sample, e.g., by 60 cells sorting (e.g., fluorescence activated cell sorting, "FACS"; or magnetic bead cell sorting) to select B lymphocytes expressing human IL- 1α -specific Ig. These cells can then be immortalized by viral transformation (e.g., using EBV) or by fusion to another immortalized cell such as a human myeloma according to known techniques. The B lymphocytes within this population that express Ig specific for human IL-1 α can then be isolated by limiting dilution meth-

ods (e.g., cells in wells of a microtiter plate that are positive for Ig specific for human IL-1 α are selected and subcultured, and the process repeated until a desired clonal line can be isolated). See, e.g., Goding, Monoclonal Abs: Principles and Practice, pp. 59-103, Academic Press, 1986. Those clonal cell 5 lines that express Ig having at least nanomolar or picomolar binding affinities for human IL-1α are preferred. MAbs secreted by these clonal cell lines can be purified from the culture medium or a bodily fluid (e.g., ascites) by conventional Ig purification procedures such as salt cuts, size exclusion, ion exchange separation, and affinity chromatography.

Although immortalized B lymphocytes might be used in in vitro cultures to directly produce mAbs, in certain cases it might be desirable to use heterologous expression systems to produce mAbs. See, e.g., the methods described in U.S. 15 patent application Ser. No. 11/754,899, now U.S. Pat. No. 8,524,865. For example, the genes encoding an mAb specific for human IL-1α might be cloned and introduced into an expression vector (e.g., a plasmid-based expression vector) for expression in a heterologous host cell (e.g., CHO cells, 20 COS cells, myeloma cells, and E. coli cells). Because Igs include heavy (H) and light (L) chains in an H₂L₂ configuration, the genes encoding each may be separately isolated and expressed in different vectors.

Although generally less preferred, chimeric mAbs (e.g., 25 "humanized" mAbs), which are antigen-binding molecules having different portions derived from different animal species (e.g., variable region of a mouse Ig fused to the constant region of a human Ig), might be used in the invention. Such chimeric Abs can be prepared by methods known in the art. E. 30 G., Morrison et al., Proc. Nat'l. Acad. Sci. USA, 81:6851, 1984; Neuberger et al., Nature, 312:604, 1984; Takeda et al., Nature, 314:452, 1984. Similarly, Abs can be humanized by methods known in the art. For example, monoclonal Abs with a desired binding specificity can be commercially humanized 35 or as described in U.S. Pat. Nos. 5,693,762; 5,530,101; or 5,585,089.

The mAbs described herein might be affinity matured to enhance or otherwise alter their binding specificity by known Bio/Technology 10:779-783, 1992), random mutagenesis of the hypervariable regions (HVRs) and/or framework residues (Barbas et al. Proc Nat. Acad. Sci. USA 91:3809-3813, 1994; Schier et al. Gene 169:147-155, 1995; Yelton et al. J. Immunol. 155:1994-2004, 1995; Jackson et al., J. Immunol. 154 45 (7):3310-9, 1995; and Hawkins et al, J. Mol. Biol. 226:889-896, 1992. Amino acid sequence variants of an Ab may be prepared by introducing appropriate changes into the nucleotide sequence encoding the Ab. In addition, modifications to nucleic acid sequences encoding mAbs might be altered (e.g., 50 without changing the amino acid sequence of the mAb) for enhancing production of the mAb in certain expression systems (e.g., intron elimination and/or codon optimization for a given expression system). The mAbs described herein can another mAb) or non-protein molecule. For example, a mAb might be conjugated to a water soluble polymer such as polyethylene glycol or a carbon nanotube (See, e.g., Kam et al., Proc. Natl. Acad. Sci. USA 102: 11600-11605, 2005). See, U.S. patent application Ser. No. 11/754,899.

Preferably, to ensure that high titers of human IL-1 α -specific mAb can be administered to a subject with minimal adverse effects, the mAb compositions of the invention are at least 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.9 or 65 more percent by weight pure (excluding any excipients). The mAb compositions of the invention might include only a

single type of mAb (i.e., one produced from a single clonal B lymphocyte line) or might include a mixture of two or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) different types of mAbs. In addition to human IL-1 α mAbs, the Ab compositions of the invention might also include other mAbs that specifically bind antigens other than human IL-1 α .

To modify or enhance their function, the human IL-1 α mAbs might be conjugated another molecule such as a cytotoxin or detectable label. A human IL-1α specific mAb might be conjugated with one or more cytotoxins to more effectively kill cells expressing IL-1α. Cytotoxins for use in the invention can be any cytotoxic agent (e.g., molecule that can kill a cell after contacting the cell) that can be conjugated to a human IL-1α specific mAb. Examples of cytotoxins include, without limitation, radionuclides (e.g., 35 S, 14 C, 32 P, 125 I, 131 I, 90 Y, 89 Zr, 201 Tl, 186 Re, 188 Re, 57 Cu, 213 Bi, and 211 At), conjugated radionuclides, and chemotherapeutic agents. Further examples of cytotoxins include, but are not limited to, antimetabolites (e.g., 5-fluorouricil (5-FU), methotrexate (MTX), fludarabine, etc.), anti-microtubule agents (e.g., vincristine, vinblastine, colchicine, taxanes (such as paclitaxel and docetaxel), etc.), alkylating agents (e.g., cyclophasphamide, melphalan, bischloroethylnitrosurea (BCNU), etc.), platinum agents (e.g., cisplatin (also termed cDDP), carboplatin, oxaliplatin, JM-216, CI-973, etc.), anthracyclines (e.g., doxorubicin, daunorubicin, etc.), antibiotic agents (e.g., mitomycin-C), topoisomerase inhibitors (e.g., etoposide, tenoposide, and camptothecins), or other cytotoxic agents such as ricin, diptheria toxin (DT), Pseudomonas exotoxin (PE) A, PE40, abrin, saporin, pokeweed viral protein, ethidium bromide, glucocorticoid, anthrax toxin and others. See, e.g., U.S. Pat. No. 5,932,188.

The human IL-1α specific mAb can also be conjugated to a detectable label. Useful detectable labels in the present invention include biotin or streptavidin, magnetic beads, fluorescent dyes (e.g., fluorescein isothiocyanate, texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e.g., 3H , ^{125}I , ^{35}S , ^{14}C , ^{32}P , ^{111}In , ^{97}Ru , ^{67}Ga , ^{68}Ga , or ⁷²As), radioopaque substances such as metals for radioimagmethods such as VH and VL domain shuffling (Marks et al. 40 ing, paramagnetic agents for magnetic resonance imaging, enzymes (e.g., horseradish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads. Means of detecting such labels are well known to those of skill in the art. Thus, for example, radiolabels may be detected using photographic film or scintillation counters. Fluorescent markers may also be used and can be detected using a photodetector to detect emitted illumination. Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and colorimetric labels are detected by simply visualizing the colored label.

The present invention also encompasses nucleic acid molalso be modified by conjugation to another protein (e.g., 55 ecules encoding fully human mAbs specific for human IL-1α. Although the same nucleic acid molecule might encode both the heavy and light chains of a human IL- 1α -specific mAb, two different nucleic acid molecules, one encoding the heavy chain and the other encoding the light chain might also be 60 used. The amino acid sequences of three IgG1 mAbs specific for human IL-1 α are presented herein. See SEQ ID NOs: 1, 3, 5, 7, 9, and 11. Exemplary nucleic acid molecules encoding these amino acid sequences are also described herein. See SEQ ID NOs: 2, 4, 6, 8, 10, and 12. Any other suitable nucleic acid that encodes the amino acid sequences of the two described IgG1 mAbs or other mAbs within the invention might also be used.

For production of mAbs, the nucleic acid molecules of the invention might be incorporated into an expression vector in an orientation wherein such nucleic acid molecules are operatively linked to expression control sequences such as transcriptional and translational control sequences. Examples of 5 expression vectors include vectors derived from plasmids and vectors derived from viruses such as adenoviruses, adenoassociated viruses, and retroviruses. The nucleic acid molecules encoding a light chain and a heavy chain might be incorporated into a single vector or different vectors. The 10 vectors of the invention might also include regulatory sequences such as promoters and/or enhancers (see, U.S. Pat. Nos. 5,168,062, 4,510,245 and 4,968,615), selectable markers, or sequences encoding affinity tags (for facilitating purification) or a detectable label.

For production of mAbs, the vectors of the invention can be introduced into a suitable host cell, e.g., a prokaryotic cell such as a bacteria or, preferably, a eukaryotic cell such as mammalian, plant, or yeast host cell. Examples of methods for introducing heterologous polynucleotides into host cells 20 include use of viral vectors, electroporation, encapsulation of the polynucleotide(s) in liposomes, dextran-mediated transfection, calcium phosphate precipitation, polybrene-mediated transfection, protoplast fusion, Agrobacterium-mediated transformation, biolistic transformation, and direct microin- 25 jection of the DNA into nuclei. Mammalian cell lines are presently preferred for expression of mAbs from vectors. Examples of mammalian host cells include Chinese hamster ovary (CHO) cells (e.g., the DG44 CHO cell line), HeLa cells, baby hamster kidney (BHK) cells, African green monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), NS0 cells, SP2 cells, HEK-293T cells, 293 Freestyle cells, and NIH-3T3 cells. The mAbs of the invention might also be expressed in transgenic animals or plants. See, e.g., U.S. Pat. Nos. 5,827,690; 5,756,687; 5,750,172; 35 5,741,957; 6,046,037; and 5,959,177.

The invention provides a method for detecting a human IL- 1α -expressing cell in a sample by contacting the cell with a human IL-1α-specific mAb and detecting the mAb bound to the cell. The invention also provides a method for killing a 40 human IL-1α-expressing cell by contacting the cell with a human IL-1α-specific mAb. Such killing can be accomplished by complement-mediated killing, Ab-dependent cellmediated cytotoxicity, or Ab-mediated delivery of a cytotoxin. The Abs described herein have also been shown to be 45 useful for other methods.

For example, MABp1 has been to reduce IL-1α induced ICAM1 and E-selectin expression on endothelial cells. MABp1 has also been shown to be used in immunoassays for detecting and quantifying IL-1 α in a biological sample. 50

EXAMPLES

Example 1

Cloning of anti-hIL-1\alpha IgG1 and Kappa Chains

Variable region heavy chain (V-HC) and variable region light chain (V-LC) sequences were gene synthesized using amino acid sequence information provided in U.S. Pat. No. 60 5,959,085. V-HC was PCR amplified introducing HindIII/ ClaI sites upstream of the ATG start codon and a NheI site at the 3' end. The human germline IgG1 constant region (including exons and introns) was PCR amplified modifying the two 5' triplets encoding for the first two amino acids Ala-Ser to an 65 Nhel site, and introducing a BamHI site at the 3' end. The human germline IgG1 constant region amino acid sequence

corresponded to Swiss-Prot entry P01857, except for a K171Q and a V261L exchange. The V-HC and constant IgG1-HC sequence were ligated using the NheI site and cloned into pcDNA3 using HindIII and BamHI sites.

>hIL-1a-IgG1-HC

>hIL-la-IqG1-HC

55

(SEO ID NO: 1) MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCTASGF TFSMFGVHWVRQAPGKGLEWVAAVSYDGSNKYYAESVKGRFTISRD NSKNILFLQMDSLRLEDTAVYYCARGRPKVVIPAPLAHWGQGTLVT FSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS ${\tt GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP}$ $\verb|SNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLEPPKPKDTLM|$ ISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAQTKPREEQYNS ${\tt TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR}$ EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIALEWESNGQPENN YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGK

(SEQ ID NO: 2) atggagttcgggctgagttgggtgttcctggtggctctgctgcggg gcgtgcagtgccaggtgcagctggtggagagtgggggtggcgtggt qcaqcctqqccqqtctctqcqcctqtcttqcactqcctccqqtttt accttttctatqtttqqtqtqcactqqqtqcqccaqqctcccqqca agggactggaatgggtggccgccgtgagttacgacgggtccaacaa atattacgctgagagcgtgaaaggcagattcaccatcagcagagat aattccaaqaatattctqttcctqcaqatqqacaqtctqaqactqq aggacactgctgtgtactactgcgctcgtggacgccctaaggtggt

catccccgccccctggcacattggggccagggaactctggtgacc ttttctagcgctagcaccaagggcccatcggtatccccctggcacc $\verb|ctcctccaagagcacctctgggggcacagcggccctgggctgcctg|$ $\tt gtcaaggactacttccccgaaccggtgacggtgtcgtggaactcag$ $\tt gcgccctgaccagcggcgtccacaccttcccggctgtcctacagtc$ $\verb"ctcaggactctactccctcagcagcgtagtgaccgtgccctccagc"$ agcttgggcacccagacctacatctgcaacgtgaatcacaagccca gcaacaccaaggtggacaagaaagttgagcccaaatcttgtgacaa aactcacacatqcccaccqtqcccaqcacctqaactcctqqqqqqa ccgtcagtcttcctcttccccccaaaacccaaggacaccctcatga $\verb|tctcccggacccctgaggtcacatgcgtggtggtggacgtgagcca|\\$ cgaagaccctgaggtcaagttcaactggtacgtggacggcgtggag gtgcataatgcccagacaaagccgcgggaggagcagtacaacagca cgtaccgtgtggtcagcgtcctcaccgtcctgcaccaggactggct gaatggcaaggagtacaagtgcaaggtctccaacaaagccctccca qccccatcqaqaaaaccatctccaaaqccaaaqqqcaqccccqaq aaccacaqqtqtacaccctqccccatcccqqqatqaqctqaccaa

45

50

55

60

65

9

-continued

gaaccaggtcagcctgacctgcctggtcaaaggcttctatcccagc
gacatcgccctggagtgggagagcaatgggcagccggagaacaact
acaagaccacgcctcccgtgctggactccgacggctccttcttcct
ctacagcaagctcaccgtggacaagagcaggtggcagcaggggaac
gtcttctcatgctccgtgatgcatgaggctctgcacaaccactaca
cgcagaagagcctctccttaagtccgggaaaataa

The V-LC was PCR amplified introducing HindIII/ClaI sites upstream of the ATG start codon and a BsiWI site at the 3' end. The human constant Kappa-LC sequence was PCR amplified introducing a 5' BsiWI site encoding an additional Arg and the first amino acids Thr, and a BamHI site at the 3' end. The human constant Kappa-LC amino acid sequence corresponded to Swiss-Prot entry P01834.V-HC and constant Kappa-LC sequences were ligated using the BsiWI site and cloned into pcDNA3 using HindIII and BamHI sites.

>hIL-1a-K-LC

[SEQ ID NO: 3]

MDMRVPAQLLGLLLWFPGSRCDIQMTQSPSSVSASVGDRVTITCR

ASQGISSWLAWYQQKPGKAPKLLIYEASNLETGVPSRFSGSGSGSD

FTLTISSLQPEDFATYYCQQTSSELLSEGGGTKVEHRTVAAPSVFI

FPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESV

TEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF

NRGEC

>hIL-1a-K-LC [SEQ ID NO: 4] ${\tt atggacatgcggtgccggccagctgctggtggtgctgctgctgt}$ ggttccctggatctaggtgcgacattcagatgacccagtcccccag $\verb"ctcagtgtcagcctccgtgggcgacagagtgacaatcacctgccgc"$ $\tt gcctctcagggaatctctagttggctggcctggtaccagcagaagc$ $\verb"ctggaaaggcccccaagctgctgatctatgaagcctccaacctgga"$ $\tt gaccggcgtgccctctcgcttcagcggctcaggctcaggcagtgat$ $\verb|tttactctgaccatcagctccctgcagccagaggatttcgctactt|\\$ actactgccagcagacctcttcatcctgctgtccttcgggggaggc ${\tt acaaaggtggagcaccgtacggtggctgcaccatctgtcttcatct}$ $\verb|tcccgccatctgatgagcagttgaaatctggaactgcctctgttgt|$ gtgcctgctgaataacttctatcccagagaggccaaagtacagtgg aaggtggataacgccctccaatcgggtaactcccaggagagtgtca cagagcaggacaggacagcacctacagcctcagcagcaccct qacqctqaqcaaaqcaqactacqaqaaacacaaaqtctacqcctqc gaagtcacccatcagggcctgagttcaccggtgacaaagagcttca acaggggagagtgttag

10

Example 2

Generation of NATHMAB-hIL- 1α IgG1 and Kappa Chain

The complete sequence encoding the NATHMAB-hIL-1a/ IgG1 heavy chain was gene synthesized. The V-HC sequence corresponded to the amino acid sequence described in U.S. Pat. No. 5,959,085. The human constant IgG1-HC sequence corresponded to Swiss-Prot entry P01857. The nucleotide sequence was codon optimized for expression in CHO cells. A Kozac sequence (gccacc) was added upstream of the start ATG.

>NATHMAB-hIL-1A-IGG1-HC

[SEQ ID NO: 5]
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCTASGF
TFSMFGVHWVRQAPGKGLEWVAAVSYDGSNKYYAESVKGRFTISRD
NSKNILFLQMDSLRLEDTAVYYCARGRPKVVIPAPLAHWGQGTLVT
FSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP
SNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLM
ISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR
EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN
YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY
TQKSLSLSPGK

>NATHMAB-hIL-1A-IGG1-HC [SEO ID NO: 6] ${\tt gccaccatggagtttggtctgtcctgggtgttcttggtggctctgc}$ tgagggggtgcagtgccaggtccagctggtggagtctggtgggg agtggtgcagcctgggagatctctgcggctgtcttgcactgcctct ggtttcactttctctatgtttggtgtgcattgggtcaggcaagcac $\verb|caggcaaaggactcgagtgggtcgcagctgtgagctatgacgggtc|\\$ $\verb|taacaaatattacgctgagtctgtcaagggtaggtttaccatcagc|$ $\verb|cgggata| attccaaaaatatcctgttcctgcaaatggactctctga$ $\tt ggctggaagatactgcagtctactattgtgcaaggggaggccaaa$ ggtggtgatccccgctcccctcgctcactggggacagggaaccctg gtgactttcagctctgctagcaccaagggccctagcgtgttcccat ${\tt tggctccttcctccaaatctacttctggaggcaccgccgccctggg}$ ${\tt atgtctcgtgaaagattattttcctgagcccgtcaccgtgagctgg}$ ${\tt aacagcggcgccctgactagcggcgtgcacacctttcccgcagtgc}$ tgcaatctagcgggctgtactccctgagctctgtcgtgaccgtgcc ctccagcagcctcggaactcagacctacatctgcaatgtcaatcat aaaccctctaataccaaagtcgataagaaggtcgaacctaaatctt gcgataaaacccatacctgcccccttgcccagcacccgaactgct qqqcqqtccctctqtqtttctqttcccccccaaacccaaaqatacc ctqatqatctctaqqacccccqaqqtcacttqtqtcqtqqtqqatq

The complete sequence encoding the NATHMAB-hIL-1a/ Kappa light chain was gene synthesized. The V-LC sequence 25 corresponded to the amino acid sequence described in U.S. Pat. No. 5,959,085. The human constant Kappa-LC sequence corresponded to Swiss-Prot entry P01834. The nucleotide sequence was codon optimized for expression in CHO cells. A Kozac sequence (gccacc) was added upstream of ATG.

>NATHMAB-hIL-1A-K-LC

[SEQ ID NO: 7]

MDMRVPAQLLGLLLWFPGSRCDIQMTQSPSSVSASVGDRVTITCR

ASQGISSWLAWYQQKPGKAPKLLIYEASNLETGVPSRFSGSGSGSD

FTLTISSLQPEDFATYYCQQTSSELLSEGGGTKVEHTVAAPSVFIF

PPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVT

EQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFN

RGEC

12

-continued cootgacactgtotaaggoogactacgagaaacacaaagtgtacgo

ttcaataggggagaatgctga

Example 3

Expression of NATHMAB-IL1-α (IgG1/k Subtype)

NATHMAB-IL-1α was expressed and purified using a transient transfection method. Cell culture supernatant or protein G affinity purified Ab was subjected to further analy-15 sis as described below. Human embryonic kidney (HEK) 293T cells were cultured in DMEM containing 10% FCS, and transiently transfected using jetPEI reagent (Polyplus) according to manufacturer's protocol. Cells were seeded on 10 cm dishes (3×10⁶ cells per 10 cm dish) 24 h prior to transfection to reach approximately 50% density at the time point of transfection. 5 μg per dish of pcDNA3-anti-hIL-1α-IgG1-HC and a 2-fold molar excess of pcDNA3-anti-hIL-1α-Kappa were used for transfection. After recovery, medium was changed to DMEM containing 2% FCS (10 ml per dish) and Ab was collected for 5 to 6 days. The supernatant was collected, filtered, pH adjusted to 7.5-8, and stored at 4° C. until further use.

Part of the supernatant (250 ml) was incubated with protein G sepharose (GE Healthcare) for 3 h at 4° C. on a rotation wheel. Then, the protein G sepharose was loaded onto a gravity flow column and washed with PBS. Ab was eluted in 1 ml fractions using 100 mM glycine/150 mM NaCl into 100 µl Tris (pH 8), followed by dialysis with PBS containing 10% glycerol. The total protein concentration of each fraction was measured using the BCA Protein Detection Kit (Pierce). Correct size of heavy and light chains, and of the assembled native Ab was confirmed by SDS-PAGE.

Supernatant containing NATHMAB-hIL-1 α purified Ab and Triton X-100 cell lysates of producer HEK 293T cells were tested for antigen binding in a radioimmunoassay (RIA) using \$^{125}I-hIL-1 α . Binding was assayed by absorption to protein G. All samples bound 125 I-hIL-1 α with highest activity in the eluate. Binding of purified NATHMAB-hIL-1 α in a concentration of 0.012% (half-max activity in RIA) to 125 I-hIL-1 α was used for measuring the affinity coefficient. The Ka of NATHMAB-hIL-1 α under these conditions was 3.03× 10^{10} M⁻¹. Back calculation revealed an estimated concentration of approximately 30 µg/ml active anti-hIL-1 α -IgG in the purified eluate.

Neutralizing activity of NATHMAB-hIL1α was tested in a bioassay using the murine EL4-6.1 subline which produces high levels of IL-2 when treated with murine or human IL-1 α (Zubler et al., J. Immunol. 134:3662-3668, 1985). The indicated concentrations of NATHMAB-hIL-1a (eluate) were incubated for 30 min at 37° C. with various concentrations of recombinant hIL-1α (eBioscience) in a final volume of 100 μl/well in a 96-well culture plate (flat bottomed). Each point was carried out in triplicate and in culture medium (DMEM, 60 5% FCS). To each well were added 100 μl of a suspension of EL4-6.1 cells (5×10⁵ cells/ml) in culture medium containing 0.2 μg/ml ionomycin. After incubation for 24 h at 37° C. in a 5% CO₂ incubator, cell free supernatants were harvested and assayed for IL-2 concentrations using a commercially avail-65 able ELISA (R&D Systems). The results showed that NATHMAB-IL-1α effectively neutralized hIL-1α-induced IL-2 secretion by EL-4 cells.

50

60

13

To test for neutralization of membrane-bound hIL-1 α , the same EL-4 cell-based assay as described above was used with following modifications. Different concentrations of NATHMAB-hIL-1α (eluate) were incubated with various numbers of human activated monocytes. For monocyte 5 preparation, PBMC were isolated from buffy coat using Ficoll-Paque centrifugation. Monocytes were allowed to adhere for 1.5 h at 37° C. in RPMI on plastic dishes. Nonadherent lymphocytes were washed away to yield a nearly pure monocyte culture. Monocytes were cultured in RPMI 10 containing Gln, Pyr, and 10% FCS for 24 h with LPS (1 μg/ml) at 37° C. in a 5% CO₂ incubator. Cells were detached with PBS/2 mM EDTA, carefully scraped from plates, and transferred into Falcon tubes. Cells were washed twice with PBS, resuspended in PBS/1% PFA and fixed for 10 min at 20° C. Cells were washed with glycine buffer (150 mM glycine, 15 75 mM NaCl, pH 7.4), then with culture medium and counted. The results showed that NATHMAB-hIL-1α effectively neutralized IL-2 secretion by EL-4 cells induced by membranebound hIL-1α. In an experiment similar to that described above, NATHMAB-hIL-1 α was tested for neutralization of $_{20}$ murine IL-1α. Indicated amounts of NATHMAB-hIL-1α supernatant were incubated with recombinant human (h) or murine (m) IL-1 α (eBioscience). The supernatant containing the Ab neutralized human, but not murine, IL-1 α .

Example 4

Ab-Mediated Killing of Cancer Cells

Human peripheral blood mononuclear cells (PBMC) isolated from the buffy coat by standard Ficoll Paque preparation 30 were incubated in either RPMI-1640 CM or RPMI-1640-CM containing rhIL-2 (30 ng/ml, ebioscience) at 37° C. and 5% CO₂ overnight and used as effector cells (E). THP1 cells were used as the targets (T). The assay was carried out in 96-well plates with each point in triplicate. After 1×10^4 targets that were incubated with different concentration of MABp1 for 15 mins, effector cells were added in an ET ratio of 25:1 and 50:1 to 1×10^4 targets and incubated for another 4 hours. 75 ul of assay volume were transferred to a new 96-well plate and cytotoxicity was assayed using the LDH cytotoxicity detec- 40 tion kit (Roche) according to manufacturer's protocol. % specific lysis=(mean experimental release-mean spontaneous release without antibody)×100/(mean maximal release from targets-mean spontaneous release from targets) A. untreated PBMC were used as effector cells. B. rhIL-2-treated PBMC 45 were used as effector cells. In both cases, increasing concentrations (1.25 to 20 ug/ml) of MABp1 resulted in increased target cell killing (up to about 90%) at both ET ratios.

Example 5

Human Anti-IL 1α Specific mAb Sequences

The complete sequence encoding for another human anti-hIL-1algG₁/Kappa light chain specific for human IL1 α ⁵⁵ (MABp1) was synthesized and expressed as described above. In the nucleic acids encoding the heavy and light chains, a Kozac sequence (gccacc) was added upstream of the start ATG.

Heavy Chain

[SEQ ID NO: 9]

 ${\tt MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCTASGF}$

TFSMFGVHWVROAPGKGLEWVAAVSYDGSNKYYAESVKGRFTISRD

14

-continued
NSKNILFLQMDSLRLEDTAVYYCARGRPKVVIPAPLAHWGQGTLVT
FSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP
SNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLEPPKPKDTLM
ISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR
EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN
YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY
TQKSLSLSPGK

[SEO ID NO: 10] gccaccatggagtttggtctgtcctgggtgttcttggtggctctgc tgagggggtgcagtgccaggtccagctggtggagtctggtgggg agtggtgcagcctgggagatctctgcggctgtcttgcactgcctct $\verb"ggtttcactttctctatgtttggtgtgcaagggtcaggcaagcacc"$ ${\tt aggcaaaggactcgagtgggtcgcagctgtgagctatgacgggtct}$ ${\tt aacaaatattacgctgagtctgtcaagggtaggataccatcagccg}$ ggataattccaaaaatatcctgacctgcaaatggactctctgaggc tggaagatactgcagtctactattgtgcaagggggaggccaaaggt ggtgatccccgctcccctcgctcactggggacagggaaccctggtg ${\tt actttcagctctgctagcaccaagggccctagcgtgttcccattgg}$ $\verb|ctccacctccaaatctacttctggaggcaccgccgccctgggatgt|$ $\verb|ctcgtgaaagattattttcctgagcccgtcaccgtgagctggaaca|\\$ gcggcgccctgactagcggcgtgcacaccatcccgcagtgctgcaa tctagcgggctgtactccctgagctctgtcgtgaccgtgccctcca gcagcctcggaactcagacctacatctgcaatgtcaatcataaacc ctctaataccaaaqtcqataaqaqqqtcqaacctaaatcttqcqat aaaacccatacctgcccccttgcccagcacccgaactgctgggcg gtccctctgtgatctgaccccccaaacccaaagataccctgatga tctctaggaccccgaggtcacttgtgtcgtggtggatgtgtccca cgaagatccagaagtcaaattcaactggtatgtggacggggtcgaa gtgcacaacgcaaagaccaagcctagggaggaacagtataatagca catatagggtggtcagcgtcctgaccgtcctgcatcaggactggct gaatggcaaagaatataagtgtaaagtgtccaacaaggccctgcca gccccaatcgaaaagacaatctctaaagccaaggggcaaccccggg aacctcaggtctatacactgccaccctctcgggaggaaatgaccaa $\tt gaatcaggtgagcctgacatgtcagtgaagggtattatccctccga$ $\verb"cattgccgtggagtgggagagcaatggacaaccagaaaataactac"$ ${\tt aaaaccacacccctgtgctggactccgatggaccttcttcctcta}$ ctctaagctgacagtggataagtctaggtggcagcaggggaatgtg actcctgctctgtgatgcacgaggcactgcacaatcattatacaca

aaagtctctgtctctgtctccaggaaagtaa

-continued

Light Chain [SEQ ID NO: 11]

MDMRVPAQLLGLLLWFPGSRCDIQMTQSPSSVSASVGDRVTITCR

ASQGISSWLAWYQQKPGKAPKLLIYEASNLETGVPSRFSGSGSGSD

FTLTISSLQPEDFATYYCQQTSSELLSEGGGTKVEHKRTVAAPSVF

IFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES

VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS

FNRGEC

[SEO ID NO: 12] gccaccatggacatgcgcgttcctgcccagctcctcggactgctgc tgctaggacccaggctcccggtgtgatattcagatgacacagtctc cctcctccgtatctgcatccgtgggcgacagggtcacaatcacttg tagggccagccaggggatctctagaggctcgcatggtaccaacaaa agccaggtaaggctccgaaactgctcatttacgaagctagtaacct $\verb"cgaaacaggcgtgccaagccggatagcggctccggaccggactgac"$ $\verb|ttcaccctcactatacctccctgcaacctgaggattagccacatat|$ ${\tt tactgtcagcaaacttatcattctgctctcctaggtggaggaacta}$ aggtggagcacaagcggacagagctgctcctagcgtattatcaccc tccaagcgatgaacagctgaagtcagggaccgccagcgtggtctgc ctgctcaataattataccctcgcgaggctaaggtccaatggaaagt ggataacgccctccagagcggtaactctcaggagtctgtcacagag caagacagcaaggatagcacctattccctctccagcaccctgacac tgtctaaggccgactacgagaaacacaaagtgtacgcttgtgaggt gactcaccagggactgagtagccctgtgacaaaatctttcaatagg ggagaatgctga

Example 6

MABp1 Binding Affinity

The binding affinity of purified MABp1 was determined 45 using surface plasmon resonanace (SPR) on a BIAcore 2000 instrument (GE Health Sciences). A mouse monoclonal antihuman IgG (Fc) Ab was covalently immobilized on the flow cells of a CM5 sensor chip using a human Ab capture kit and amine coupling kit (GE Health Sciences). Immobilization 50 levels of 8000-14000 RU would typically be achieved. After immobilization of the mouse anti-human IgG (Fc) capture Ab, three start-up cycles with HBS-EP running buffer (GE Health Sciences) and two start-up cycles with MABp1 were run to stabilize the CM5 surface and to remove any non- 55 covalently bound Ab. For analysis, MABp1 Ab was diluted into HBS-EP running buffer to a final concentration of 1 μg/mL and immobilized to 700 RU on one flow cell of the CM5 sensor chip. Carrier-free human IL-1A cytokine (eBioscience, #34-8019) was serially diluted in HBS-EP running 60 buffer over a test range from 100 nM to 0.05 nM. Flow rate was 30 µl/min. Dissociation data for each cytokine dilution was recorded for 15 minutes. The CM5 surface was regenerated after each cycle using a single injection of 3 M MgCl₂ for 25 seconds at a flow rate of 30 µl/min. BiaEvaluation software 65 and a Langmuir binding model was used to fit the data. The KD for MABp1 was determined to be less than 2.0×10^{-10} M.

16

Example 7

MABp1 Inhibits Tumor Cell Invasion of a Basement Membrane Matrix

Matrigel (BD), a basement membrane matrix, was thawed at 4° C. overnight and the dilute (5 mg/ml to 1 mg/ml) in serum free cold cell culture media. 100 ul of the diluted matrigel was placed into the upper chambers of a 24-well transwell (Costar) and the transwell was incubated at 37° C. for at least 4 to 5 h for gelling. Tumor cells (MDA-MB-231 and THP-1) were harvested from tissue culture flasks by Trypsin/EDTA, washed with culture media, and resuspended in medium containing 1% FBS at a density of 1×10^6 cells/ml. The gelled matrigel was gently washed with warmed serum free-culture media, and 100 ul of the cell suspension was added in each well. The lower chamber of the transwell was filled with 600 ul of culture media, and the plates was incubated at 37° C. for 12 to 24 h. The cells that did not invade the matrigel were gently scraped off the top of each transwell with a cotton swab. The transwells were then removed from the 24-well plates and stained with crystal violet after fixing the invaded cells with 70% ethanol or methanol. The invaded cells were counted under a light microscope. The percent of cells invading the matrigel was significantly inhibited in the 25 presence of MABp1.

Example 8

MABp1 Blocks Increase in ICAM1 Expression in Endothelial Cells

Human umbilical vein endothelial cells (HUVEC) (BD Biosciences) were seeded to 24-well plates at 5×10^5 per well in 1 mL of M-200 medium supplemented with low-serum growth supplement (Invitrogen). Cells were allowed to settle for 3-4 hours. Medium was aspirated and a fresh 1 mL of M-200 was added per well. MABp1 was added directly to cells @ 4.26 μg/mL, co-incubated for 15 minutes at room temperature, and then recombinant human IL-1α (rhIL1A, eBioscience) was added to a final concentration of 40 pg/mL. Positive control wells received the addition of IL-1 α only. HUVEC cells in the absence of IL-1 α or the absence of MABp1 served as negative controls. After 17-20 hours incubation at 37° C., 5% CO₂, cells were lifted from the plates by a non-enzymatic treatment for 20 minutes using CellStripper reagent (Cellgro Mediatech) and then immediately assayed for CD54 (ICAM-1) expression using standard flow cytometry protocols. Staining buffer comprised Dulbecco's PBS supplemented with 2% heat-inactivated fetal bovine serum. PE-conjugated mouse anti-human CD54 (ICAM-1) mAb (eBioscience, clone HA58) or a PE-conjugated mouse IgG1k isotype control (eBiocience, #12-4714) were used per manufacturer's instructions to stain HUVEC cells in a 100 microliter staining volume for 20 minutes in the dark at room temperature. Two washes in staining buffer were subsequently performed and then samples were acquired on a FAC-SCalibur flow cytometer (BD Biosciences). Among several independent experiments (n=5) the upregulation of ICAM-1 adhesion molecules induced by rhIL1A on the surface of HUVEC cells was neutralized by MABp1 to baseline levels exhibited by the unstimulated HUVEC cells.

Example 9

MABp1 Blocks Increase in E-selectin Expression in Endothelial Cells

Similar to its effects on ICAM-1 induction, MABp1-mediated neutralization of induction of CD62E (E-selectin) on

HUVEC cells was also observed. This effect was most pronounced when HUVEC cells were stimulated not by soluble rhIL-1 α but by membranous IL-1 α anchored by glycosylphosphatidylinositol to the surface of DG44 CHO cells (GPI-IL1A cells). In this experiment, confluent cultures of HUVEC cells in 6-well plates were co-cultured overnight with 5×10^6 GPI-IL1A DG44 cells in M-200 medium, either alone, in the presence of 10 µg/mL MABp1, or in the presence of 10 μg/mL D5 isotype control Ab. After 17-20 hours, HUVEC monolayers were washed extensively with Dulbecco's PBS and then lifted by non-enzymatic treatment for 20 minutes with CellStripper reagent (Cellgro Mediatech) and then immediately assayed for CD62E (E-selectin) expression using standard flow-cytometry protocols. Staining buffer comprised Dulbecco's PBS supplemented with 2% heat-inactivated fetal bovine serum. PE-conjugated mouse anti-human CD62E mAb (eBioscience, clone P2H3) or a PE-conjugated mouse IgG1k isotype control (eBiocience, clone P3) were used per manufacturer's instructions to stain HUVEC cells in a 100 microliter staining volume for 20 minutes in the 20 dark at room temperature. Two washes in staining buffer were subsequently performed and then samples were acquired on a FACSCalibur flow cytometer (BD Biosciences). Upregulated E-selectin expression on the surface of HUVEC cells induced by membranous GPI-IL-1 α was neutralized by MABp1 to 25 baseline levels exhibited by unstimulated HUVEC cells.

Example 10

MRC-5 Bioassay for MABp1 Potency (Neutralization of rhIL1A)

The MRC-5 cell line, derived from fetal human lung fibroblasts, was obtained from the ATCC collection (CCL-171). The IL-1 neutralizing potency of MABp1 was assayed by 35 measuring IL-1A induced release of IL-6 from MRC-5 cells. MRC-5 cells were seeded at 5×10^3 per well to a 96-well plate in 100 microliters of DMEM complete medium. Cells were cultured overnight at 37° C. in a humidified 5% CO₂ incubator. Confluent MRC-5 cells were subsequently cultured 40 another 24 hours with 20 pg/mL of recombinant human IL-1A (rhIL1A, eBioscience) either alone or in the presence of increasing concentrations of MABp1. Negative control cells were not stimulated with rhIL1A. After the 24 hours, supernatants were collected and assayed for IL-6 release 45 using and IL-6 ELISA kit from eBioscience. The IC₅₀, or concentration of MABp1 required to inhibit 50% of the maximal IL-6 release, was in the range of 0.001-0.01 μg/mL.

Example 11

MABp1 Identifies IL-1α+ Cells

One hundred microliters of sodium heparin anti-coagulated whole blood was aliquoted to polystyrene FACS tubes. 55 Samples were incubated at room temperature for 15 minutes with 1 mg of human IgG (protein-A purified) plus 2 ml of heat-inactivated fetal bovine serum to block Fc receptors. Primary Abs were then added to the sample: Either 1 mg of Alexa-488 labeled MABp1, 1 mg of FITC-labeled monoclonal anti-membrane human IL1A Ab (FAB200F, R&D Systems), or 1 mg of a murine isotype control (IC002F, R&D Systems). Primary Abs were incubated with sample for 30 minutes at room temperature in the dark. Sample erythrocytes were then lysed (BD Biosciences PharmLyse solution) at 65 room temperature for 15 minutes, centrifuged at 300×g for 5 minutes, and aspirated. Sample pellets were washed three

18

times with 1 mL Hank's balanced salt solution (HBSS) containing 2% heat-inactivated fetal bovine serum. Sample was resuspended in 0.3 mL HBSS+2% FBS and data was acquired on a FACSCalibur flow cytometer and analyzed using CellQuest software. Flow cytometric analysis of human PBMC using MABp1 showed that only 0.2% of PBMC were positive for IL-1 α .

Example 12

MABp1 for Detecting and Tracking Infections and Inflammation

Flow cytometric analysis (as in Example 11) of human PBMC using MABp1 showed a 3.6-fold increase in the percent of PBMC positive for IL- $1\alpha^+$ in a subject with a subclinical infection compared to a normal control. Similarly, in a subject with an inflamed wisdom tooth, an increase in the percent of PBMC positive for IL- $1\alpha^+$. A substantial decrease in the number of IL- $1\alpha^+$ PBMC was observed from 14 to 45 days after removal of the wisdom tooth.

Example 13

Immunoassay for Detecting and/or Quantifying IL-1 α

In general, very low levels of IL-1 α are present in the plasma of human subjects. Because these levels are often beyond the detection threshold of conventional immunoassays, an ELISA with improved sensitivity was developed. In this ELISA, exogenous anti-IL-1α Ab (e.g., MABp1) can be added to a biological sample being tested (e.g., human plasma) under conditions that allow the Ab to bind IL-1 α in the sample. Because, it was observed that almost all IL-1 α in human plasma samples exists already bound to endogenous anti-IL-1α Ab, the latter step can often be omitted. The sample with IL-1 α -Ab complexes is then applied to a filter (Amicon centrifugal device) with a molecular weight cutoff of about 100 kDa to separate the IL-1α-Ab complexes from molecules in the sample less than the molecular weight cutoff. In one experiment, this resulted in a 50-fold concentration. The processed sample (and dilutions thereof) was then added to wells of a microtiter plate coated with an anti-human IgG capture Ab (2 ug/ml mouse anti-human IgG, Fc-specific, Southern Biotech product code #9042-01). After allowing time to bind the IL-1 α -Ab complexes in the sample, the wells were washed to remove non-binding material. A labeled antihuman IL-1 α secondary Ab was then added to the wells (0.2 ug/ml biotin-conjugated monoclonal mouse anti-human IL-1A Ab, clone CRM6, eBioscience catalog #13-7017). After allowing time to bind the IL-1 α in the wells, the plate was washed and the amount of labeled anti-human IL-1 α in each well was quantified as an indication of the concentration of IL-1 α in the sample being tested.

Other Embodiments

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

SEQUENCE LISTING

<160	JN <	JMBEF	OF	SEQ	ID 1	10S:	12								
<211 <212	L> LE 2> TY	EQ II ENGTH PE: RGANI	H: 47	71	sap	oiens	3								
		EQUEN			-										
Met 1	Glu	Phe	Gly	Leu 5	Ser	Trp	Val	Phe	Leu 10	Val	Ala	Leu	Leu	Arg 15	Gly
Val	Gln	Càa	Gln 20	Val	Gln	Leu	Val	Glu 25	Ser	Gly	Gly	Gly	Val 30	Val	Gln
Pro	Gly	Arg 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Thr	Ala	Ser	Gly 45	Phe	Thr	Phe
Ser	Met 50	Phe	Gly	Val	His	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu
Glu 65	Trp	Val	Ala	Ala	Val 70	Ser	Tyr	Asp	Gly	Ser 75	Asn	Lys	Tyr	Tyr	Ala 80
Glu	Ser	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn
Ile	Leu	Phe	Leu 100	Gln	Met	Asp	Ser	Leu 105	Arg	Leu	Glu	Asp	Thr 110	Ala	Val
Tyr	Tyr	Cys 115	Ala	Arg	Gly	Arg	Pro 120	Lys	Val	Val	Ile	Pro 125	Ala	Pro	Leu
Ala	His 130	Trp	Gly	Gln	Gly	Thr 135	Leu	Val	Thr	Phe	Ser 140	Ser	Ala	Ser	Thr
Lys 145	Gly	Pro	Ser	Val	Phe 150	Pro	Leu	Ala	Pro	Ser 155	Ser	Lys	Ser	Thr	Ser 160
Gly	Gly	Thr	Ala	Ala 165	Leu	Gly	Cya	Leu	Val 170	ГÀз	Asp	Tyr	Phe	Pro 175	Glu
Pro	Val	Thr	Val 180	Ser	Trp	Asn	Ser	Gly 185	Ala	Leu	Thr	Ser	Gly 190	Val	His
Thr	Phe	Pro 195	Ala	Val	Leu	Gln	Ser 200	Ser	Gly	Leu	Tyr	Ser 205	Leu	Ser	Ser
Val	Val 210	Thr	Val	Pro	Ser	Ser 215	Ser	Leu	Gly	Thr	Gln 220	Thr	Tyr	Ile	CÀa
Asn 225	Val	Asn	His	ГÀа	Pro 230	Ser	Asn	Thr	Lys	Val 235	Asp	Lys	Tàa	Val	Glu 240
Pro	Lys	Ser	CÀa	Asp 245	ГÀа	Thr	His	Thr	Сув 250	Pro	Pro	CAa	Pro	Ala 255	Pro
Glu	Leu	Leu	Gly 260	Gly	Pro	Ser	Val	Phe 265	Leu	Phe	Pro	Pro	Lys 270	Pro	ГЛа
Asp	Thr	Leu 275	Met	Ile	Ser	Arg	Thr 280	Pro	Glu	Val	Thr	Сув 285	Val	Val	Val
Asp	Val 290	Ser	His	Glu	Asp	Pro 295	Glu	Val	Lys	Phe	Asn 300	Trp	Tyr	Val	Asp
Gly 305	Val	Glu	Val	His	Asn 310	Ala	Gln	Thr	Lys	Pro 315	Arg	Glu	Glu	Gln	Tyr 320
Asn	Ser	Thr	Tyr	Arg 325	Val	Val	Ser	Val	Leu 330	Thr	Val	Leu	His	Gln 335	Asp
Trp	Leu	Asn	Gly 340	ГÀа	Glu	Tyr	ГÀа	Cys 345	ГÀа	Val	Ser	Asn	350 Lys	Ala	Leu
Pro	Ala	Pro 355	Ile	Glu	Lys	Thr	Ile 360	Ser	Lys	Ala	Lys	Gly 365	Gln	Pro	Arg

-continued

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys 370 375 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Leu Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys <210> SEQ ID NO 2 <211> LENGTH: 1416 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 2 atggagttcg ggctgagttg ggtgttcctg gtggctctgc tgcggggcgt gcagtgccag 60 gtgcagctgg tggagagtgg gggtggcgtg gtgcagcctg gccggtctct gcgcctgtct 120 tgcactgcct ccggttttac cttttctatg tttggtgtgc actgggtgcg ccaggctccc 180 ggcaagggac tggaatgggt ggccgccgtg agttacgacg ggtccaacaa atattacgct 240 gagagegtga aaggeagatt caccateage agagataatt ceaagaatat tetgtteetg 300 cagatggaca gtctgagact ggaggacact gctgtgtact actgcgctcg tggacgccct 360 aaggtggtca tccccgcccc cctggcacat tggggccagg gaactctggt gaccttttct 420 agegetagea ceaagggeee ateggtette eccetggeae ceteeteeaa gageaeetet 480 gggggcacag cggccctggg ctgcctggtc aaggactact tccccgaacc ggtgacggtg 540 togtggaact caggogooct gaccagoggo gtocacacot tocoggotgt cotacagtoo 600 660 traggartet actoretrag ragegtagtg acceptgoret cragragett gegracerag acctacatct gcaacgtgaa tcacaagccc agcaacacca aggtggacaa gaaagttgag 720 780 cccaaatctt gtgacaaaac tcacacatgc ccaccgtgcc cagcacctga actcctgggg ggaccgtcag tetteetett eececcaaaa eecaaggaca eecteatgat eteeeggace 840 cctgaggtca catgcgtggt ggtggacgtg agccacgaag accctgaggt caagttcaac tggtacgtgg acggcgtgga ggtgcataat gcccagacaa agccgcggga ggagcagtac aacaqcacqt accqtqtqqt caqcqtcctc accqtcctqc accaqqactq qctqaatqqc aaggagtaca agtgcaaggt ctccaacaaa gccctcccag cccccatcga gaaaaccatc 1080 tccaaagcca aagggcagcc ccgagaacca caggtgtaca ccctgccccc atcccgggat 1140 gagetgacca agaaccaggt cageetgace tgeetggtea aaggetteta teecagegae 1200 ategecetgg agtgggagag caatgggeag eeggagaaca actacaagae eacgeeteee 1260 gtgctggact ccgacggctc cttcttcctc tacagcaagc tcaccgtgga caagagcagg 1320 tggcagcagg ggaacgtctt ctcatgctcc gtgatgcatg aggctctgca caaccactac 1380 1416 acgcagaaga gcctctcctt aagtccggga aaataa

300

360

420

540

23

-continued

<211> LENGTH: 235 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 3 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 10 Phe Pro Gly Ser Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser 35 40 45 Gln Gly Ile Ser Ser Trp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Glu Ala Ser Asn Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Ser Asp Phe Thr Leu Thr Ile Ser Ser Leu Gl
n Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gl
n Gln 100 105 110 Thr Ser Ser Phe Leu Leu Ser Phe Gly Gly Gly Thr Lys Val Glu His Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 135 Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 150 Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 185 Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 200 Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 215 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys <210> SEQ ID NO 4 <211> LENGTH: 708 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 4 atggacatgc gcgtgcccgc ccagctgctg gggctgctgc tgctgtggtt ccctggatct aggtgegaca tteagatgae ceagteecee ageteagtgt cageeteegt gggegacaga gtgacaatca cctgccgcgc ctctcaggga atctctagtt ggctggcctg gtaccagcag aageetggaa aggeeeccaa getgetgate tatgaageet eeaacetgga gaceggegtg ccctctcgct tcagcggctc aggctcaggc agtgatttta ctctgaccat cagctccctg cagocagagg atttogotac ttactactgc cagcagacct cttccttcct getgtccttc gggggaggca caaaggtgga gcaccgtacg gtggctgcac catctgtctt catcttcccg ccatctgatg agcagttgaa atctggaact gcctctgttg tgtgcctgct gaataacttc

tateceagag aggeeaaagt acagtggaag gtggataaeg eeeteeaate gggtaaetee

caggagagtg tcacagagca ggacagcaag gacagcacct acagcctcag cagcaccctg

-continued

		_	tacg cctgcgaagt cacccatc	_
ggcctgagtt cac	eggtgae aaag	agette aacagg	iggag agtgttag	708
<210> SEQ ID N <211> LENGTH: <212> TYPE: PR <213> ORGANISM				
<400> SEQUENCE	: 5			
Met Glu Phe Gl 1	y Leu Ser Tr 5	p Val Phe Leu 10	. Val Ala Leu Leu Arg Gly 15	7
Val Gln Cys Gl 20	n Val Gln Le	u Val Glu Ser 25	Gly Gly Gly Val Val Glr 30	1
Pro Gly Arg Se 35	r Leu Arg Le	u Ser Cys Thr 40	Ala Ser Gly Phe Thr Phe 45	<u></u>
Ser Met Phe Gl 50	y Val His Tr 55	p Val Arg Gln	ı Ala Pro Gly Lys Gly Leu 60	1
Glu Trp Val Al 65	a Ala Val Se 70	r Tyr Asp Gly	Ser Asn Lys Tyr Tyr Ala 75 80	ı
Glu Ser Val Ly	s Gly Arg Ph 85	e Thr Ile Ser 90	Arg Asp Asn Ser Lys Asr 95	1
Ile Leu Phe Le 10		p Ser Leu Arg 105	l Leu Glu Asp Thr Ala Val 110	-
Tyr Tyr Cys Al 115	a Arg Gly Ar	g Pro Lys Val 120	. Val Ile Pro Ala Pro Leu 125	1
Ala His Trp Gl	y Gln Gly Th 13		Phe Ser Ser Ala Ser Thr 140	:
Lys Gly Pro Se 145	r Val Phe Pr 150	o Leu Ala Pro	Ser Ser Lys Ser Thr Ser 155 160	
Gly Gly Thr Al	a Ala Leu Gl 165	y Cys Leu Val 170	. Lys Asp Tyr Phe Pro Glu 175	1
Pro Val Thr Va 18		n Ser Gly Ala 185	Leu Thr Ser Gly Val His 190	3
Thr Phe Pro Al 195	a Val Leu Gl	n Ser Ser Gly 200	Leu Tyr Ser Leu Ser Ser 205	:
Val Val Thr Va 210	l Pro Ser Se 21		Thr Gln Thr Tyr Ile Cys 220	3
Asn Val Asn Hi 225	s Lys Pro Se 230	r Asn Thr Lys	Val Asp Lys Lys Val Glu 235 240	
Pro Lys Ser Cy	s Asp Lys Th 245	r His Thr Cys 250	Pro Pro Cys Pro Ala Pro 255	>
Glu Leu Leu Gl 26		r Val Phe Leu 265	Phe Pro Pro Lys Pro Lys 270	;
Asp Thr Leu Me 275	t Ile Ser Ar	g Thr Pro Glu 280	. Val Thr Cys Val Val Val 285	-
Asp Val Ser Hi 290	s Glu Asp Pr 29	-	Phe Asn Trp Tyr Val Asp 300	>
Gly Val Glu Va 305	l His Asn Al 310	a Lys Thr Lys	Pro Arg Glu Glu Gln Tyr 315 320	
Asn Ser Thr Ty	r Arg Val Va 325	l Ser Val Leu 330	Thr Val Leu His Gln Asp 335	>
Trp Leu Asn Gl		r Lya Cya Lya 345	Val Ser Asn Lys Ala Leu 350	ı
Pro Ala Pro Il	e Glu Lys Th	r Ile Ser Lys	Ala Lys Gly Gln Pro Arc	ł

-continued

35	5	36	0				365				
Glu Pro Gl: 370	n Val Tyr T	hr Leu Pr 375	o Pro	Ser	Arg	380	Glu	Leu	Thr	ГЛа	
Asn Gln Va 385	l Ser Leu T 3	hr Cys Le 90	u Val	Lys	Gly 395	Phe	Tyr	Pro	Ser	Asp 400	
Ile Ala Va	l Glu Trp G 405	lu Ser As	n Gly	Gln 410	Pro	Glu	Asn	Asn	Tyr 415	ГЛа	
Thr Thr Pr	o Pro Val L 420	eu Asp Se	r Asp 425		Ser	Phe	Phe	Leu 430	Tyr	Ser	
Lys Leu Th	r Val Asp L 5	ys Ser Ar 44		Gln	Gln	Gly	Asn 445	Val	Phe	Ser	
Cys Ser Va 450	l Met His G	lu Ala Le 455	u His	Asn	His	Tyr 460	Thr	Gln	rys	Ser	
Leu Ser Le 465	u Ser Pro G 4	ly Lys 70									
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 1422	sapiens									
<400> SEQU	ENCE: 6										
gccaccatgg	agtttggtct	gtcctggg	tg tt	cttgg	ıtgg	ctct	gct	gag	99999	gtgcag	60
tgccaggtcc	agctggtgga	gtctggtg	gg gg	agtgg	ıtgc	agco	ctgg	gag .	atcto	ctgcgg	120
ctgtcttgca	ctgcctctgg	tttcactt	tc tc	tatgt	ttg	gtgt	gcat	ttg (ggtca	aggcaa	180
gcaccaggca	aaggactcga	gtgggtcg	ca gc	tgtga	igct	atga	acgg	gtc ·	taaca	aaatat	240
tacgctgagt	ctgtcaaggg	taggttta	cc at	cagco	:999	ataa	attc	caa .	aaata	atcctg	300
ttcctgcaaa	tggactctct	gaggetgg	aa ga	tactg	ıcag	tcta	actai	ttg ·	tgcaa	aggggg	360
aggccaaagg	tggtgatccc	cgctcccc	tc gc	tcact	999	gaca	aggga	aac	cctg	gtgact	420
ttcagctctg	ctagcaccaa	gggcccta	gc gt	gttcc	cat	tgg	ctcci	ttc .	ctcca	aaatct	480
acttctggag	gcaccgccgc	cctgggat	gt ct	cgtga	aag	atta	attti	tcc ·	tgago	cccgtc	540
accgtgagct	ggaacagcgg	cgccctga	ct ag	cggcg	ıtgc	acad	ectti	tee .	cgcaç	gtgctg	600
caatctagcg	ggctgtactc	cctgagct	ct gt	cgtga	ıccg	tgc	cctc	cag ·	cagco	ctcgga	660
actcagacct	acatctgcaa	tgtcaatc	at aa	accct	cta	atad	ccaa	agt :	cgata	aagaag	720
gtcgaaccta	aatcttgcga	taaaaccc	at ac	ctgcc	ccc	ctto	geee	agc .	accc	gaactg	780
ctgggcggtc	cctctgtgtt	tetgttee	cc cc	caaac	cca	aaga	atac	cct (gatga	atctct	840
aggacccccg	aggtcacttg	tgtcgtgg	tg ga	tgtgt	ccc	acga	aagat	tee .	agaag	gtcaaa	900
ttcaactggt	atgtggacgg	ggtcgaag	tg ca	caacg	jcaa	agad	ccaa	gaa .	taggg	gaggaa	960
cagtataata	gcacatatag	ggtggtca	gc gt	cctga	ıccg	tcct	gcat	tca 🤄	ggact	tggctg	1020
	aatataagtg										1080
	aagccaaggg										1140
									_		1200
	tgaccaagaa										
	ccgtggagtg										1260
ccccctgtgc	tggactccga	tggttcct	tc tt	cctct	act	ctaa	agct	gac .	agtg	gataag	1320
tctaggtggc	agcaggggaa	tgtgttct	cc tg	ctctg	ıtga	tgca	acga	ggc .	actgo	cacaat	1380

cattatacac aaaagtetet gtetetgtet eeaggaaagt aa

1422

29 30

-continued

<210> SEQ ID NO 7 <211> LENGTH: 234 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 7 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Phe Pro Gly Ser Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Glu Ala Ser Asn Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Ser Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln 105 Thr Ser Ser Phe Leu Leu Ser Phe Gly Gly Gly Thr Lys Val Glu His 120 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 155 Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 170 Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 180 185 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 215 220 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys <210> SEQ ID NO 8 <211> LENGTH: 711 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 8 gccaccatgg acatgcgcgt tcctgcccag ctcctcggac tgctgctgct ttggttccca qqctcccqqt qtqatattca qatqacacaq tctccctcct ccqtatctqc atccqtqqqc gacagggtca caatcacttg tagggccagc caggggatct ctagttggct cgcatggtac 180 caacaaaagc caggtaaggc tccgaaactg ctcatttacg aagctagtaa cctcgaaaca 240 300 ggegtgeeaa geeggtttag eggeteeggt teeggttetg actteaceet cactatttee tecetgeaac etgaggattt tgecacatat taetgteage aaacttette tittetgete 360 teetttggtg ggggaaetaa ggtggageae acagtggeeg eeeccagegt etttatette cccccaagcg atgaacagct gaagtcaggg accgccagcg tggtctgcct gctcaataat 480

ttttaccete gegaggetaa ggtecaatgg aaagtggata aegeeeteea gageggtaae

-continued

											-	con	tin [.]	ued		
tct	cagga	agt o	ctgto	cacaç	ga go	caaga	acago	aaç	ggata	agca	ccta	attc	cat (ctcca	agcacc	600
ctga	acact	gt (ctaaq	ggccg	ga ct	cacga	agaaa	a cad	caaaq	gtgt	acgo	ettgi	tga 🤅	ggtga	actcac	660
cag	ggact	ga q	gtago	ccct	gt ga	acaa	aatct	tto	caata	aggg	gaga	aatg	ctg a	a		711
<210> SEQ ID NO 9 <211> LENGTH: 471 <212> TYPE: PRT <213> ORGANISM: Homo sapiens																
< 400	O> SI	EQUEI	ICE :	9												
Met 1	Glu	Phe	Gly	Leu 5	Ser	Trp	Val	Phe	Leu 10	Val	Ala	Leu	Leu	Arg 15	Gly	
Val	Gln	Cys	Gln 20	Val	Gln	Leu	Val	Glu 25	Ser	Gly	Gly	Gly	Val 30	Val	Gln	
Pro	Gly	Arg 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Thr	Ala	Ser	Gly 45	Phe	Thr	Phe	
Ser	Met 50	Phe	Gly	Val	His	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu	
Glu 65	Trp	Val	Ala	Ala	Val 70	Ser	Tyr	Asp	Gly	Ser 75	Asn	Lys	Tyr	Tyr	Ala 80	
Glu	Ser	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn	
Ile	Leu	Phe	Leu 100	Gln	Met	Asp	Ser	Leu 105	Arg	Leu	Glu	Asp	Thr 110	Ala	Val	
Tyr	Tyr	Cys 115	Ala	Arg	Gly	Arg	Pro 120	Lys	Val	Val	Ile	Pro 125	Ala	Pro	Leu	
Ala	His 130	Trp	Gly	Gln	Gly	Thr 135	Leu	Val	Thr	Phe	Ser 140	Ser	Ala	Ser	Thr	
Lys 145	Gly	Pro	Ser	Val	Phe 150	Pro	Leu	Ala	Pro	Ser 155	Ser	Lys	Ser	Thr	Ser 160	
Gly	Gly	Thr	Ala	Ala 165	Leu	Gly	СЛа	Leu	Val 170	Lys	Asp	Tyr	Phe	Pro 175	Glu	
Pro	Val	Thr	Val 180	Ser	Trp	Asn	Ser	Gly 185	Ala	Leu	Thr	Ser	Gly 190	Val	His	
Thr	Phe	Pro 195	Ala	Val	Leu	Gln	Ser 200	Ser	Gly	Leu	Tyr	Ser 205	Leu	Ser	Ser	
Val	Val 210	Thr	Val	Pro	Ser	Ser 215	Ser	Leu	Gly	Thr	Gln 220	Thr	Tyr	Ile	CÀa	
Asn 225	Val	Asn	His	ràa	Pro 230	Ser	Asn	Thr	Lys	Val 235	Asp	ГÀа	Arg	Val	Glu 240	
Pro	ГÀа	Ser	CÀa	Asp 245	ГЛа	Thr	His	Thr	Сув 250	Pro	Pro	CÀa	Pro	Ala 255	Pro	
Glu	Leu	Leu	Gly 260	Gly	Pro	Ser	Val	Phe 265	Leu	Phe	Pro	Pro	Lys 270	Pro	Lys	
Asp	Thr	Leu 275	Met	Ile	Ser	Arg	Thr 280	Pro	Glu	Val	Thr	Сув 285	Val	Val	Val	
Asp	Val 290	Ser	His	Glu	Asp	Pro 295	Glu	Val	Lys	Phe	Asn 300	Trp	Tyr	Val	Asp	
Gly 305	Val	Glu	Val	His	Asn 310	Ala	Lys	Thr	Lys	Pro 315	Arg	Glu	Glu	Gln	Tyr 320	
Asn	Ser	Thr	Tyr	Arg 325	Val	Val	Ser	Val	Leu 330	Thr	Val	Leu	His	Gln 335	Aap	
Trp	Leu	Asn	Gly 340	Lys	Glu	Tyr	Lys	Сув 345	Lys	Val	Ser	Asn	Lys 350	Ala	Leu	

1260

1320

1380

33

-continued

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 360 Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys 375 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 410 Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 465 <210> SEO ID NO 10 <211> LENGTH: 1422 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEOUENCE: 10 gccaccatgg agtttggtct gtcctgggtg ttcttggtgg ctctgctgag gggggtgcag

tgccaggtcc agctggtgga gtctggtggg ggagtggtgc agcctgggag atctctgcgg 120 ctgtcttgca ctgcctctgg tttcactttc tctatgtttg gtgtgcattg ggtcaggcaa 180 gcaccaggca aaggactcga gtgggtcgca gctgtgagct atgacgggtc taacaaatat 240 tacgctgagt ctgtcaaggg taggtttacc atcagccggg ataattccaa aaatatcctg 300 ttcctgcaaa tggactctct gaggctggaa gatactgcag tctactattg tgcaaggggg 360 aggccaaagg tggtgatccc cgctcccctc gctcactggg gacagggaac cctggtgact 420 ttcagctctg ctagcaccaa gggccctagc gtgttcccat tggctccttc ctccaaatct 480 acttetggag geacegeege eetgggatgt etegtgaaag attatttee tgageeegte 540 accgtgaget ggaacagegg egecetgaet ageggegtge acacetttee egeagtgetg 600 caatctageg ggetgtacte cetgagetet gtegtgaceg tgeeeteeag cageetegga actcagacct acatctgcaa tgtcaatcat aaaccctcta ataccaaagt cgataagagg gtcgaaccta aatcttgcga taaaacccat acctgccccc cttgcccagc acccgaactg 780 ctgggcggtc cctctgtgtt tctgttcccc cccaaaccca aagataccct gatgatctct 840 aggacccccq aggtcacttq tqtcqtqqtq qatqtccc acqaaqatcc aqaaqtcaaa 900 ttcaactggt atgtggacgg ggtcgaagtg cacaacgcaa agaccaagcc tagggaggaa 960 cagtataata gcacatatag ggtggtcagc gtcctgaccg tcctgcatca ggactggctg 1020 aatggcaaag aatataagtg taaagtgtcc aacaaggccc tgccagcccc aatcgaaaag 1080 acaatotota aagocaaggg gcaaccoogg gaacctcagg totatacact gccaccotot 1140 cgggaggaaa tgaccaagaa tcaggtgagc ctgacatgtc ttgtgaaggg tttttatccc 1200

tccgacattg ccgtggagtg ggagagcaat ggacaaccag aaaataacta caaaaccaca

coccetytyc tygactecya tygtteette tteetetact etaagetyae agtygataag

tetaggtgge ageaggggaa tgtgttetee tgetetgtga tgeaegagge aetgeaeaat

-continued

catt	atac	cac .	aaaa	gtctc	et gt	ctct	gtct	cca	aggaa	agt	aa					1422
<211 <212	L> LE 2> TY	ENGT	D NO H: 23 PRT ISM:	36	sar	oiens	3									
< 400)> SI	EQUE	NCE:	11												
Met 1	Asp	Met	Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp	
Phe	Pro	Gly	Ser 20	Arg	Сув	Asp	Ile	Gln 25	Met	Thr	Gln	Ser	Pro 30	Ser	Ser	
Val	Ser	Ala 35	Ser	Val	Gly	Asp	Arg 40	Val	Thr	Ile	Thr	Cys 45	Arg	Ala	Ser	
Gln	Gly 50	Ile	Ser	Ser	Trp	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	Gly	ГÀа	
Ala 65	Pro	Lys	Leu	Leu	Ile 70	Tyr	Glu	Ala	Ser	Asn 75	Leu	Glu	Thr	Gly	Val 80	
Pro	Ser	Arg	Phe	Ser 85	Gly	Ser	Gly	Ser	Gly 90	Ser	Asp	Phe	Thr	Leu 95	Thr	
Ile	Ser	Ser	Leu 100	Gln	Pro	Glu	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln	
Thr	Ser	Ser 115	Phe	Leu	Leu	Ser	Phe 120	Gly	Gly	Gly	Thr	Lys 125	Val	Glu	His	
Lys	Arg 130	Thr	Val	Ala	Ala	Pro 135	Ser	Val	Phe	Ile	Phe 140	Pro	Pro	Ser	Asp	
Glu 145	Gln	Leu	Lys	Ser	Gly 150	Thr	Ala	Ser	Val	Val 155	Cys	Leu	Leu	Asn	Asn 160	
Phe	Tyr	Pro	Arg	Glu 165	Ala	Lys	Val	Gln	Trp 170	Lys	Val	Asp	Asn	Ala 175	Leu	
Gln	Ser	Gly	Asn 180	Ser	Gln	Glu	Ser	Val 185	Thr	Glu	Gln	Asp	Ser 190	Lys	Asp	
Ser	Thr	Tyr 195	Ser	Leu	Ser	Ser	Thr 200	Leu	Thr	Leu	Ser	Lys 205	Ala	Asp	Tyr	
Glu	Lys 210	His	Lys	Val	Tyr	Ala 215	Cys	Glu	Val	Thr	His 220	Gln	Gly	Leu	Ser	
Ser 225	Pro	Val	Thr	Lys	Ser 230	Phe	Asn	Arg	Gly	Glu 235	CÀa					
<211 <212	L> LE 2> TY	ENGTI	D NO H: 71 DNA ISM:	L7	sa <u>r</u>	oiens	3									
<400)> SI	EQUE	NCE:	12												
gcca	accat	gg .	acato	gegeg	gt to	cctgo	ccaç	gcto	cctcc	ggac	tgct	gcto	gat t	tggt	tccca	60
ggct	caaq	ggt	gtgat	atto	a ga	atgad	cacaç	g tct	ccct	cct	ccgt	atct	gc a	atcco	gtgggc	120
gaca	agggt	ca	caato	cactt	g ta	aggg	ccago	caç	9999	atct	ctaç	gttgg	get o	cgcat	ggtac	180
caad	caaaa	agc ·	caggt	aagg	gc to	cgaa	aacto	g cto	attt	acg	aago	ctagt	aa d	ectes	gaaaca	240
ggcg	gtgco	caa 🤉	geeg	gttta	ag co	ggata	ccggt	tec	ggtt	ctg	actt	caco	ect o	cacta	atttcc	300
tcc	ctgca	aac (ctgaç	ggatt	t tç	gccad	catat	tac	tgto	agc	aaac	cttct	tc t	tttc	etgete	360
tcct	ttgg	gtg	gagga	aacta	aa go	gtgga	agcad	aaç	gegga	cag	ttgo	ctgct	cc t	agco	gtettt	420
atct	tccc	ctc	caago	gate	ga ad	cagct	gaag	g tca	ggga	eccg	ccaç	gegte	ggt d	etged	etgete	480

-continued

aataattttt accctcgcga ggctaaggtc caatggaaag tggataacgc cctccagagc	540
ggtaactete aggagtetgt cacagageaa gacageaagg atageaceta tteeetetee	600
agcaccetga caetgtetaa ggeegaetae gagaaacaca aagtgtaege ttgtgaggtg	660
actcaccagg gactgagtag ccctgtgaca aaatctttca ataggggaga atgctga	717

10

What is claimed is:

1. A human IgG1 monoclonal antibody that specifically binds to interleukin-1 alpha (IL-1 α), wherein the monoclonal antibody comprises the amino acid sequence of an immunoglobulin produced by expressing in a mammalian host cell a first nucleic acid encoding the amino acid sequence of SEQ

ID NO: 9 and a second nucleic acid encoding the amino acid sequence of SEQ ID NO: 11.

2. The human IgG1 monoclonal antibody of claim 1, wherein the mammalian host cell is a Chinese hamster ovary cell.

* * * * *